Chapter 31

Mathematics of Experimentally Generated
Chemoattractant Gradients

Marten Postma and Peter J.M. van Haastert

Summary

Many eukaryotic cells move in the direction of a chemical gradient. Several assays have been developed
to measure this chemotactic response, but no complete mathematical models of the spatial and temporal
gradients are available to describe the fundamental principles of chemotaxis. Here we provide analytical
solutions for the gradients formed by release of chemoattractant from a point source by passive diffusion
or forced flow (micropipettes) and gradients formed by laminar diffusion in a Zigmond chamber. The
results show that gradients delivered with a micropipette are formed nearly instantaneous, are very steep
close to the pipette, and have a steepness that is strongly dependent on the distance from the pipette.
In contrast, gradients in a Zigmond chamber are formed more slowly, are nearly independent of the
distance from the source, and resemble the temporal and spatial properties of the natural cAMP wave
that Dictyostelinm cells experience during cell aggregation.
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1. Introduction

Chemotaxis is a vital process in a wide variety of organisms,
ranging from bacteria to vertebrates. Prokaryotes use chemo-
taxis to move toward high nutrient concentrations or away from
unfavorable conditions, while in eukaryotes it is also involved
in embryogenesis, wound healing and the immune response.
Chemotaxis is achieved by coupling gradient sensing to basic cell
movement. Prokaryotes are too small to sense spatial gradients
and therefore rely on temporal changes of the chemoattractant
concentration to achieve chemotaxis. They do this by adjusting
their tumbling frequency in response to temporal changes of the
chemoattractant concentration (1). Eukaryotic cells are typically
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large enough to be able to measure a spatial gradient. The difference
in receptor occupation between each side of the cell leads to an
internal polarization. A pseudopod is extended at the side with
the highest receptor occupation and at the same time, pseudopod
formation at all other sides is repressed, resulting in directional
cell migration (2, 3).

Dictyostelinm is a eukaryotic organism that is widely used to
study chemotaxis (4-6). Starved Dictyostelium cells periodically
secrete cAMP. Through relay of the cAMP signal by neighboring
cells, concentric cAAMP waves are generated. Starved Dictyostelium
cells are chemotactically sensitive to cAMP and by movement in
the direction of the origin of the cAMP waves the cells are able
to aggregate into groups of up to 1,000,000 cells. The chemotactic
response of Dictyostelium is optimized for the dynamic cAMP
waves that coordinate both aggregation and multicellular
development. Cells show a much stronger chemotactic response
to a cAMP wave where the mean concentration increases over
time, than to a static spatial gradient. Dictyostelium uses both
spatial gradient sensing and the “bacterial-like” temporal gradient
sensing to respond to these dynamic chemoattractant gradients
(7=9).

Several chemotaxis assays have been developed that can be
divided into two groups, depending on how the gradient devel-
oped. In Zigmond chambers, cells are placed on a bridge sepa-
rated by a chemoattractant source and a sink reservoir (10).
A gradient will be formed under the bridge, which will be nearly
linear when at equilibrium. Depending on the geometry of the
bridge (which in most setups is a few mm) half-maximal equilib-
rium is reached only after several minutes. Dunce chambers have
similar properties: a linear gradient that is formed during several
minutes of incubation.

Many experiments are performed with micropipettes, because
this allows the precise positional stimulation of the cell (11). Since
the pipette is usually in the field of microscopic observation, dis-
tances are relatively small (less than 200 pm) and equilibrium is
established very fast on the order of seconds. Since a micropi-
pette behaves like a point source, the gradient will be nonlinear
approaching the equation dC/dx = VC = 1/x* where x is the
distance from the pipette. Thus, close to the pipette, the gradi-
ent is very steep (~100% per cell of 10 um length at a distance of
10 um from the pipette) while more shallow at the edge of the
field of observation (10% per cell at a distance of 100 um). In
this manuscript we derive mathematical equations for the tem-
poral and spatial properties of the gradients formed in a Zigmond
chamber and delivered from a pipette. We compare the theoreti-
cal properties of these gradients with experimental data meas-
uring the gradients using fluorescent dyes. Finally we compare
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these experimental gradients with those observed during the
natural aggregation of Dictyostelium cells.

2. Zigmond
Chamber-Generated
Gradients

2.1. Experimental
Setup for Zigmond
Chamber

2.2. Measurement/
Analysis for Zigmond
Chamber

2.3. Diffusion
Equations for Zigmond
Chamber

Figure la shows the experimental setup with our modified
Zigmond chamber (10). On a microscope slide, a glass bridge of
~2 mm wide and 24 mm long was placed on top of two supporting
glass strips with thickness 0.15 mm. Cells were placed under the
bridge to yield a density of 3 x 10* cells/cm?. A block of agar
containing only buffer was placed at one side of the bridge, while
a block of agar containing cAMP and buffer was placed at the
other side, which induces the formation of a ¢cAMP gradient
under the bridge. Cells were observed by phase contrast micros-
copy in an area of 350 x 270 pm or by confocal fluorescence
microscopy in an area of 150 x 150 pum, both at a distance of
600-700 pm from the agar block containing cAMP.

The formation of the cAMP gradient was deduced by measuring
the diffusion across the bridge of the modified Zigmond cham-
ber using bromophenol blue (Mw = 670 Da). This reveals that a
gradient developed during the first few minutes after the cAMDP
containing agar block was placed against the bridge (Fig. 1b).
A stable linear spatial gradient was reached at 5-10 min. This
spatial gradient remained approximately constant for 30 min, and
then slowly diminished due to depletion of the cAMP source and
accumulation of cAMP in the buffer sink (Fig. 1¢). Thus the
gradients in the modified Zigmond chamber have temporal and
spatial components during the first 5 min, but stable spatial gra-
dients during the subsequent 30 min of the experiment.

When a large reservoir with cAMP is connected to another large
empty reservoir through a thin bridge, diffusion will occur that
can be modeled essentially with a one-dimensional diffusion
equation in Cartesian coordinates:

dC(x,t) %L
S Ry 0!
» Da 5 C(x,t) (1)

In this equation D (pm?/s) denotes the diffusion coefficient of
cAMP, C(x,t) denotes the concentration at time # (s) and posi-
tion x (um) from the source. This equation is solved with the fol-
lowing boundary conditions: the concentration at x = 0 (source)
is constant with value C, the concentration at x = L (sink) is
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Fig. 1. Observed gradients in the modified Zigmond chamber. (a) Setup of the Zigmond chamber. A glass bridge
of ~2 mm wide and 24 mm long was placed on top of two supporting glass strips with thickness 0.15 mm. Cells were
placed under the bridge. A block of agar containing only buffer was placed at one side of the bridge, while a block of
agar containing 1 uM cAMP and buffer was placed at the other side. (b) A gradient of cAMP develops under the bridge,
visualized by diffusion of a dye added to the agar block containing cAMP. (c), gradients at the position of chemotactic
observation (650-750 um from the source). Using the local concentration of the dye we calculated the cAMP concentra-
tion C, the spatial gradient dC/Ax, and temporal CAMP gradient dC/Alt.
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assumed to be constant and zero. L is the length of the bridge.
The complete space-time solution of the concentration profile is
then given by:

C(x,t)=cs[l—%j—C522ﬂ;' sin(u" %)e—; (2)

n=1

where a = nn, the time constants 7 = a4 ?7, and 7, = ? /D.
The slowest time constant is 7, /7°.

After some time equilibrium will appear with a time constant
17,=1?/D. jfhe equilibrium concentration profile is given by the
first term of Eq. 2:

C(x)zCS[l—ﬁ) (3)
L
The gradient and the relative gradient are then given by:
Vam:—q (4)
L
and
VC(x) ___1 (5)
C(x) L-x

Figure2 reveals that cAMP will diffuse from the source block
approaching a steady state after about 10-20 min. The spatial
gradient is initially very steep close to the source block and very
shallow at the sink block (Fig. 2b). Over time the gradient
decreases in the half of the chamber closest to the source, but
increases at the other half closest to the sink. Finally a steady state
is reached at 10-20 min, with a magnitude that depends on the
cAMP concentration in the source and the width of the bridge.
With C=1 pM cAMP as source and a bridge of L = 2,000 pm,
the steady-state spatial gradient is constant at VC=5 nM/um. In
the field of observation (600-700 um from source) the absolute
concentration C changes from 700 to 650 nM, and the relative
spatial gradient from 0.77 to 0.83% across the cell. The temporal
gradient profile is presented in Fig. 2¢, showing that it reaches
a maximum with magnitude and at a time that depends on the
distance from the source. Close to the source the maximal tem-
poral gradient is very high and early, and becomes lower and later
further away from the source.

The experimental data of bromophenol blue diftusion (Fig. 1b)
are in close agreement with the model, except for very long incu-
bation times. Since the source and the sink are not indefinitely
large, the concentrations in the source and sink slowly decrease
and increase, respectively. As a consequence, the gradient will slowly
collapse (Fig. 1c). At the position where the cells are observed
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Fig. 2. Theoretical data for Zigmond chamber. Equation 2 was used to calculate the concentration dynamics. Panels
(a, d) present the concentration C. The spatial gradient dCAlx is presented in panels (b, €) and the temporal gradient dGAltin
panels (c, ), all at different positions and times from the source containing 1 uM of CAMP. The gray bars in the left panels and
the thick line in the right panels indicate the place of chemotactic observation (650-750 pm from the source).
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using the microscope (600-700 um from the source), this
becomes significant only after more than 2 h, much longer than
the 30 min to perform the experiments. Closer to the source
or the sink the gradient deviates from a linear gradient sooner
(Fig. 1b). At short incubation times, the gradient is formed
from 10 to 90% of the equilibrium value in about 4 min, which
is only slightly slower than the formation of the cAMP wave
during Dictyostelium cell aggregation (see later). The model and
experimental data imply that the modified Zigmond chamber
allows two assay conditions: during the first 5 min, the gradient
is formed and therefore cells are exposed to both temporal and
spatial gradients. The magnitude of these gradients resembles the
temporal and spatial gradient of the natural cAMP wave during
Dictyostelium chemotaxis (see Fig. 5 and Subheading 4). After
10 min a stable gradient is formed without a temporal component.

3. Micropipette-
Generated
Gradients

3.1. Experimental
Setup for Pipette
Assay

3.2. Measurement/
Analysis for Pipette
Assay with

and Without Flow

For the micropipette assay, a droplet of a cell suspension was
placed on a glass slide yielding a cell density of 5 x 10* cells/cm?;
the droplet has a diameter of about 10 mm and a height of 3 mm.
After the cells were allowed to adhere, a pipette filled with
100 pM cAMP is placed just above the glass surface. cAMP was
delivered from the femtotip at a pressure ranging from 0 to 100 hPa.

The formation of the cAMP gradient was deduced by measuring
the diffusion of the fluorescent dye lucifer yellow (Mw = 457 Da) using
confocal microscopy. The fluorescence intensity at different dis-
tances from the pipette was recorded in pixel elements (0.404 x
0.404 um) using excitation at 488 nm and a 520-550 nm band
pass filter for the emission. The data were calibrated using the
fluorescence intensity of diluted lucifer yellow added homogene-
ously to the bath (Fig. 3a). The deduced cAMP concentration
profile (Fig. 3b) reveals a steep gradient in the vicinity of the
pipette that rapidly declines at longer distances from the pipette.
This gradient was stable within 20 s after application of the
pipette. The concentration at the tip of the pipette is only 150
nM, compared to the 100 uM cAMP inside the pipette.

The amount of cAMP released from the pipette can be
increased by applying pressure to the pipette, which induces a
steady flow of cAMP that diffuses away. The cAMP concentra-
tion profile was again deduced from the pipette containing luci-
ter yellow, revealing that the concentration at the tip increases
from 150 nM cAMP without pressure to 3,000 nM cAMP at a
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Fig. 3. Observed gradients in the micropipette assay. A micropipette filled with 100 uM
CAMP and lucifer yellow was applied just above the glass surface in a droplet of cells.
The fluorescence intensity was measured by confocal microscopy at different times
after positioning of the pipette in the fluid. Initially no pressure was applied to the pipette
(a), and a pressure of 25 hPa was applied at 20 s (b). The concentration of CAMP was
deduced using a dilution series of lucifer yellow added homogeneously to the bath.

pressure of 25 hPa (Fig. 3c). Similar to the case without applied
pressure, the concentration rapidly decreases with distance from
the pipette, except close to the pipette (within 2 um) where the
concentration remains relatively uniform.
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3.3. Diffusion
Equations for Pipette
Gradients Without
Flow

When a pipette filled with cAMP is positioned just above the
floor of a chamber, cAMP will diffuse effectively in a half-sphere.
The point of the pipette is in the center of the sphere; the open-
ing of the pipette with opening 7, is regarded as a small sphere
from which cAMP diffuses. The diffusion equation is then given
in sphere coordinates by:

P 4) 6)

0C(x, 1) 1 0
[ it
ot x*dx  Ox

In this equation D (um?/s) denotes the diffusion coefticient of
cAMP, C(«,t) denotes the concentration at time # (s), and dis-
tance x (um) from the pipette. We assume that the gradient in
the pipette builds up very fast. Hence, equilibrium in the small
sphere at the tip of the pipette will be reached rapidly leading
to a constant concentration C_at the tip. Numerical analysis of
diffusion in the pipette and the small sphere suggests that the
time constant of this process is less than 1 s. In addition, meas-
urements presented in Fig. 3b reveal that equilibrium at the
tip is reached within 10 s. We use the boundary condition that
the concentration at the edge of the bath, x = R is constant
and zero. The complete space-time solution is then given by:

C(x’t>=csﬁ)—ﬂ_cg7_022ﬂ;lsin ﬂnx—ro g—; 7)
X R_VO i X =1 R_VO

where a_ = 7n, the time constants 7 = a7, and 7,=(R~7,)* /D.
A very good approximation for Eq. 7 is:

7 1l x-—7
C(x,t)=C,Lerfc| — Oj 8
(%1)=C,2 [2 = (®)

The time needed to reach this equilibrium strongly depends on
. ~ . 2
the distance from the pipettet, = (x—ro) / D; when t equals
this time constant about half-maximal equilibrium is reached.
After some time the gradient reaches equilibrium. The
equilibrium concentration profile is given by the first term of
Eq. 7, which for a large bath (R — ) and x > 7, is given by:

G =0l oGy (9)

S

X X

where C is the cAMP concentration in the pipette. The
absolute spatial gradient and the relative spatial gradient are
then given by:

VC(x)=-C, % =-—= (10)
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and

Cl(x) £

VC(x) 1 (11)

The experimental equilibrium data (Fig. 4a) were fitted using Eq.
9 showing that they are in close agreement with the calculated
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Fig. 4. Experimental equilibrium data of the cAMP gradient with different flow from the
micropipettes. A micropipette filled with cAMP and lucifer yellow was applied just above
the glass surface in a droplet of cells. The pressure applied was 25, 50, 80, and 100 hPa.
The equilibrium fluorescence intensity was measured by confocal microscopy at 30 s
after application of the pipette. The lines are the fitted data using Eq. 13 with C, and F
as indicated in Table 1; the dashed line is Eq. 17 for 50 hPa. The lower panel (b) shows
the same data as upper panel (a), but only at shorter distance from the pipette.
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3.4. Diffusion
Equations for Pipette
Gradients with Flow

gradient profile, except very close to the pipette. The experiment
reveals that the measured cAMP concentration at the tip (i.e., C)
is only 150 nM compared to 100 uM in the pipette, indicating
that a very strong gradient is formed in the pipette.

When pressure is applied to the pipette, liquid will flow out of the
pipette with flux F(um?/s). To account for the flow the diffusion
equation has to be extended with convection:

dC(x,t) ['5ds 1540 F  a
—=22=-D——x*—C - 12
ot x? 8xx ox ) 2nx’ dx (7)1

A complete space-time solution of this equation is difficult to
obtain. However, the equilibrium solution can be obtained rela-
tively easy. For a large bath the steady-state concentration profile
is given by:

F

1 —p 2=Dx
a1 g e S (13)
Ul E‘ZnDro

The absolute spatial gradient and the relative gradient are then
given by:

E

VE(E) =i e (14)
21 Dx 1 ;0w
and
Al 2
VC(x) F ¢ (15)
C(x) 21 Dx’ 5 g—zﬁk

The results shown in Figs. 3 and 4 reveal that with an increase
of pressure from 0 to 25 hPa, the concentration at the tip of the
pipette increases substantially from 150 nM at 0 hPa to 3,000 nM
at 25 hPa. In the absence of pressure, the concentration at the
tip is very low due to limited diffusion in the narrow tip of the
pipette, causing a large concentration gradient inside the pipette.
With liquid flow, the liquid at the tip is replaced by interior liquid
of higher concentration, resulting in a higher cAMP concentra-
tion at the tip.

The gradient profiles at different applied pressures (Fig. 4)
were fitted using Eq. 13, yielding the values for the concentra-
tion at the tip (C) and flow (F) as presented in Table 1. The cal-
culated lines are in very good agreement with experimental data,
both close to the pipette and at longer distances from the pipette.
This suggests that we derived and accurate model for gradient
formation from a pipette with diffusion and flow.
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Values of Fand C_ obtained by fitting experimental observations in Fig. 4 with Eq. 13

Applied pressure Fitted concentration Gi= C,_F_

(P, hPa) Fitted flow (£, um%s) at tip (C, nM) C, 2nD (u/m)
25 15.000 3,500 0.0875
50 30.000 7,000 0 35
80 48.000 11,000 0.88

100 60.000 14,000 14

Using the observed data and fitted values of Fand C, Eq.
13-15 can be simplified. The calculated flow is large relative to
2nDr,,, which implies that the denominator in Eq. 13-15 reduces
to 1. Furthermore, at longer distances from the pipette (i.c.,
at large x), F/2nDx in Eq. 13 becomes very small, and conse-
quently Eq. 13 reduces to the following equation:

Clx)=C, Zni)x (for large x) (16)

This equation has the same form as Eq. 9:

oaC
C(x)=—2=

-1

where o = gs 4 in (um)

. 2nD

In Fig. 4 the dashed line represents Eq. 17 with the experi-
mentally fitted values of Fand C, showing that the experimental
data are very well described with the simple Eq. 17 at distances
beyond about 15 pm from the pipette. Finally, inspecting Table
1, we noted that the fitted values of both C and F increase lin-
carly with the applied pressure P, indicating that o, and thus the
absolute concentration, depends on P?.

The usual field of observation is 100 x 100 um with the
pipette placed somewhere in the field. The time constant to
reach equilibrium, T, = (x - r,)* /D, indicates that in the field of
observation (x maximal 100 pm; 7, = 0.5 um, D = 1,000 pm?/s)
equilibrium is reached within 10 s after application of the pipette,
as was observed experimentally (Fig. 3). Thus gradients from
pipettes are essentially stable spatial gradients, except at very long
distances from the pipette.
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4. Gradients
Generated by
Aggregating
Dictyostelium
Cells

Dictyostelium cells secrete cAMP in a pulsatile manner with a
periodicity of about 5 min. The cAMP signal is relayed through
the field leading to waves of cAMP that propagate with a veloc-
ity of about 300 mm/min. These waves have been visualized by
fluorography using competition between secreted cAMP and
added [*H]cAMP for binding to a cAMP-binding protein.

We calculated the extracellular cAMP concentration during
natural cell aggregation using the original fluorographs made by
Tomchik and Devreotes (12) as presented in (13). The fluor-
ographs represent the competition of a fixed amount of [*H]
¢AMP and secreted cAMP for binding to the regulatory subunit
of cAMP-dependent protein kinase. In essence, this experiment is
an isotope dilution assay in space that follows the equation:

C,-bl 1}

Coilil L

A(x) = u{

where A(x) is the cAMP concentration at position x, C, is the
amount of [*H JcAMP-binding in the absence of cAMP, 4/ is the blanc
of the assay (i.e., the amount of [*H|cAMP-binding in the
presence of excess cAMP), C_is the amount [*H JcAMP-binding
at position x competed by unknown amount of cAMP, and # is
a proportionality constant that is determined by measuring the
amount [*H]cAMP-binding at known amounts of unlabelled
cAMP. For cAMP determinations in a test tube, the measured
units are counts per minute (cpm), while in fluorographs the
units are in gray scales. We determined the proportionality con-
stant 2 in a test tube (550 nM), and estimated the values of C,
and &4/ from the information provided by Devreotes et al. (13).
C, is the gray level in the absence of cAMP (127 in Fig. 2 from
ref. 13), while &4/ is the gray level in the presence of saturating
cAMP (90 in Fig. 2 from ref. 13). The cAMP concentration
in natural waves was calculated as the average of two successive
waves. From the spatial resolution and the speed of wave propa-
gation we calculated the spatial cAMP gradient and the temporal
cAMP gradient during cell aggregation.

The results (Fig. 5) show that the extracellular cAMP con-
centration profiles are approximately symmetric cAMP waves.
The width at the base of the wave is about 1,600 um. Since the
wave travels at a speed of about 300 um/min, the periodicity
of the wave is approximately 5-6 min. The rising flank of the
wave, as well as the width at half-maximal concentration, is about
450 pm or 1.5 min. The absolute spatial gradient of the wave,
VC = dC/dx, increases during the rising flank of the wave and
reaches a maximum of about 4 nM /um at about 1 min after arrival
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Fig. 5. Natural cAMP wave during cAMP aggregation. The cAMP concentration was deduced from fluorographs of released
CAMP measured by (13). For calculations see part 4. Gradients Generated by Aggregating Dictyostelium Cells the wave
of CAMP travels through a filed of cells at a rate of about 300 um/min (5 um/s).

of the cAMP wave. This absolute spatial gradient is only twofold
larger than the maximal spatial gradient in the Zigmond chamber
of 1.8 nM/um (see Fig. 5). The relative steepness of the wave,
VC/Cisaround 0.007 (um)! during most of the rising flank of
the cAMP wave (i.e., 7% concentration difference between front
and back of a 10-mm long cell).

The cAMP waves are propagated in the field of cells with a
speed v = dx/d¢ of 300 um/min (13). Therefore, the temporal
gradient is given by dC/dz = » VC Thus, the temporal gradi-
ent follows the spatial gradient and reaches a maximum value of
about 17.5 nM/s at 1-min after arrival of the cAMP wave. In the
Zigmond chamber the temporal gradient reaches a maximum of
3 nM/s at 2 min after application of cAMP (Fig. 1c).

5. Conclusions

The gradients formed in the modified Zigmond assay are very
different from the gradients formed by a point source releasing a
constant flux of cAMP. The major differences are: a temporal-spatial
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gradient with little distance dependency in the Zigmond assay
versus a stable gradient with very strong distance dependency. It
is surprising that the distance dependency of the pipette assay is
often not taken into account, exemplified by the absence of infor-
mation on the distance from the pipette where the chemotaxis
data were obtained, a situation we also were not aware of in the
past (14). Chemotaxis in Dictyostelium is mainly dependent on
the absolute spatial gradient resulting in only about 10 occupied
receptors more at the front of the cells relative to the rear of the
cell at threshold conditions, at prevailing receptor occupancies of
around 1,000 receptors. It will be a major effort to uncover how
cells are able to deduce spatial information from a signal that is
inherently very noisy due to the high average receptor occupancy.
The gradient models presented here may help to design experi-
ments to deduce the fundamental principles of gradient sensing
and directed locomotion.
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Chapter 32

Modeling Spatial and Temporal Dynamics of Chemotactic
Networks

Liu Yang and Pablo A. Iglesias

Summary

When stimulated by chemoattractants, eukaryotic cells respond through a combination of temporal and
spatial dynamics. These responses come about because of the interaction of a large number of signaling
components. The complexity of these systems makes it hard to understand without a means of system-
atically generating and testing hypotheses. Computer simulations have proved to be useful in testing
conceptual models. Here we outline the steps required to develop these models.

Key words: Mathematical model, Chemotaxis, Reaction—diftusion, Systems biology, Virtual cell

1. Introduction

What does a mathematical model tell me that I didn’t know
before? This is a common question posed by experimenters,
suspicious that models merely package already-known informa-
tion and provide few new insights. Models can do two things.
First, they can “verify that known interactions in some system can
produce the observed qualitative behavior” (1). When employed
this way, models act mostly as tools providing a form of consist-
ency check, ensuring that the posited conceptual models behave
as they are supposed to. However, the real benefit of models is
a predictive tool. In this case, models usually precede complete
knowledge of the system but serve to channel experimental inves-
tigations.

It is usually thought that the introduction of mathemati-
cal and computational techniques in the study of signaling
pathways is a relatively new phenomenon — an offshoot of the
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